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Abstract— Robotic grasping is a challenging task due to
the diversity of object shapes. A sufficiently labeled dataset
is essential for the grasp pose detection methods based on deep
learning. However, data annotation is a costly procedure. Active
learning aims to mitigate the greedy need for massive labeled
data. In this work, we propose a Discriminative Active Learning
(DAL) framework for robotic grasping algorithms. DAL is
an effective strategy that utilizes a shared encoder to derive
latent features from both labeled data and unlabeled data. A
discriminator is established to estimate the informativeness of
each unlabeled data sample and decide whether they should be
annotated for the next epoch. Moreover, an annotation interface
is also developed to annotate the chosen data. We evaluate DAL
with real-world grasp datasets and show superior performance,
especially when the amount of labeled data is little. Considering
annotation noise, we perform an experiment on a noisy dataset
and demonstrate that our proposed framework is stable to noisy
annotation. Besides, we train a model with about 60% data
selected by DAL of the whole dataset and it can still handle
a real-world grasp detection task in cluttered scene on a real
robot.

Index Terms— Robotic grasping, Active Learning, grasp pose
detection

I. INTRODUCTION

The technique of adaptive robotic grasping is an essential
function for a service robot in the real environment. When
a robot is placed in a new room surrounding by a set of
novel objects, as shown in Fig. 1, it either relies on existing
learned or designed knowledge to detect grasps, or learns
how to execute a successful grasp from new knowledge. Prior
knowledge is not always reliable in real-world cases, thus
learning is the necessary option to adapt a robot to a new en-
vironment and achieve a higher grasp success rate. However,
learning is an extremely resource-consuming process in an
unexploited environment. As for deep learning, data labeling
consumes the most resources including human resources and
time. As is shown in Table. I, taking the Jacquard grasp
dataset as an example, the budget of annotation is extremely
large. It is not realistic to annotate thousands of data for a
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Fig. 1. Kinova MOVO with some novel objects in cluttered scene. Using
prior knowledge, it may fail to generate good grasp poses.
specific grasp task, thus we are looking for a way to train a
satisfactory grasp detection model with as few labeled data
as possible.

Research on antipodal robotic grasping has developed sig-
nificantly in the last two decades [1], [2], [3], [4], [5]. Thanks
to the development of deep learning, recent researchers [6],
[7], [8], [9], [10], [11], [12], [13] have made huge advance-
ments in grasp pose detection. Some researchers [6], [7]
adapt object detection algorithms to grasp detection, while
there are some regression-based approaches [14], [8], [15],
[11], [12], [13] predict grasps directly without the region
proposal stage. However, deep learning is always hungry for
data. Without sufficient data, deep learning based approaches
are hard to learn accurate knowledge and provide satisfactory
results. TABLE I

ANNOTATION BUDGET OF JACQUARD GRASP DATASET

Objects amount
in Jacquard

Ground truth value
for each annotation

Annotation times
for each picture

11000+ 4 10
Annotation

times for all
Time for each

ground truth value
Time of labeling
the whole dataset

2200000 1 second 611 hours/labeler

Annotation for datasets is an exhausting and costly but
necessary procedure. Data collection and annotation are
essential for better performance when we adapt a trained
model to a new environment. Inspired by active learning [16],
researchers have proposed a series of effective methods [17],
[18], [19], [20], [21], [22] to reduce the cost of data
labeling by selectively choosing data to label rather than
labeling the whole dataset. The core idea of active learning
is that the most informative data sample would contribute
more to improve model performance than other random
samples. Generally, current active learning strategies can be
categorized into diversity-based approaches and uncertainty-



based approaches. Diversity-based approach [23], [24], [22]
selects the most representative data samples of the unlabeled
pool, while uncertainty-basedd approach [25], [18], [19],
[20] focuses on how to define a criterion to measure the
uncertainty of data samples.

Active learning has shown its efficiency in several tasks
such as semantic segmentation [24], [18] and object detec-
tion [25], [26]. However, there are two restrictions when an
active learning strategy is applied on robotic grasping tasks:
(1) Grasp pose detection methods are based fully or partially
on regression networks. Therefore, active learning strategies
designed for classification tasks are not suitable, since poste-
rior probabilities from classification networks are necessary
for these strategies. (2) The number of parameters in grasp
pose detection methods is relatively small in consideration
of real-time performance, which means an active learning
strategy with a huge number of parameters would result in
unnecessary resource consumption. In consideration of the
restrictions, it is difficult to adapt current active learning
strategies to robotic grasping tasks.

In this paper, we propose an active learning framework for
grasp pose detection algorithms. The main contributions of
this paper are summarized as:
• We propose a discriminative active learning framework

that is suitable for grasp pose detection algorithms.
Besides, we develop an interface in our proposed frame-
work to efficiently and conveniently annotate selected
data samples.

• The proposed active learning framework shares the en-
coder with a grasp pose detection network and takes full
advantage of both labeled data and unlabeled data. A
discriminator is established to utilize the latent features
extracted with the shared encoder and estimate the
distance from each unlabeled data sample to the labeled
pool. With the results of estimation, we can selectively
choose more informative data samples to train the grasp
detection network.

• We evaluate the proposed method on real-world grasp
datasets, the Cornell Grasp Dataset and the Jacquard
Grasp Dataset, and demonstrate that our method
achieves superior performance, especially when the size
of the labeled pool is relatively small. Moreover, we
establish a noisy Cornell Dataset. to simulate annota-
tion noise in real life. Our proposed active learning
framework still shows stable performance even though
annotation noise exists.

• We demonstrate that the model trained with our pro-
posed active learning framework can be deployed on a
real robot to perform real-time grasp pose detection.

II. RELATED WORK

Robotic Grasping. Grasp pose detection is a task to
generate a stable robotic grasp pose for a given object. It
has been researched for decades resulting in a wide range
of approaches [1], [9], [10], [27], [6], [7], [8], [12], [28].
Current robotic grasping methods can be categorized into
two types: analytic methods and empirical methods. Analytic

methods [1], [27] calculate grasps with physical models,
kinematics and dynamics, while empirical methods [6], [7],
[8], [12], [9], [10], [11], [13], [28] take advantage of human
labels and experience-based approaches.

Empirical methods are attentive to learning from experi-
ence. With the enormous development of deep learning, a
great number of neural networks [6], [7], [8], [9], [10], [28],
[29], [30] were designed to deal with grasp pose detection.
Most of these techniques follow a common pipeline: generate
grasp candidates from inputs (images or point clouds), score
each grasp candidate and output the grasp configuration with
the highest score. Several approaches [6], [7], [28] used a
sliding window as object detection algorithms to procure
grasp candidates which tends to cause unnecessary resource
consumption. Approaches [29], [30] transform depth data
into point cloud and feed it into PointNet++ mostly are
costly on computational time. To reduce execution time,
some approaches [6], [31] pre-processed and pruned grasp
candidates to be less time-consuming, but result in discarding
some potential grasps.

Instead of adaptation of other object detection algorithms,
some researchers proposed regression methods [8], [15],
[14], [32], [12] for grasp pose detection. Kumra et al. [14]
and Redmon et al. [32] used a deep convolutional neural
network to regress a single grasp for each input image. Mor-
rison et al. [8] proposed a fully convolutional network that
can generate grasp configurations directly without sampling
grasp candidates. Kumra et al. [15] utilized the residual con-
volutional neural network to extract more features without
much loss of real-time performance.

In spite of the excellent performance current deep-learning
methods can achieve, they are still anxious for sufficient
labeled data to train a satisfactory model. Furthermore, when
a model trained on existing datasets performs badly on a set
of new objects, a new dataset needs to be created, which is
an expensive procedure on both time and human resources.

Active Learning. Active learning [33], [34], [35], [36],
[37] aims to reduce the cost of data annotation by selectively
choosing the most representative data rather than the whole
dataset to be labeled. Broadly, there are two kinds of active
learning strategies: diversity-based strategy and uncertainty-
based strategy.

Diversity-based active learning strategy [38], [39], [40],
[23], [24], [22] concentrates on the distribution of data and
aims to choose the most informative data. A naive way
to deduce diversity is running a clustering algorithm on
unlabeled data [40]. Ebert et al. [23] proposed Graph Density
which is calculated with Manhattan distance to construct
a graph structure and updated when some instances are
removed from the unlabeled pool. The instance with the
highest graph density will be added to the labeled pool
and takes part in the next training iteration. Obviously,
diversity-based strategy is task-agnostic. Because it assumes
the instances with the highest graph density as the most
informative data. However these instances may not actually
benefit the improvement of the model.

Uncertainty-based active learning strategy [41], [42], [43],



Fig. 2. The whole structure of our proposed active learning framework DAL for robotic grasping tasks. DAL takes the following steps to select data
and train the grasp detection network: (1) The active learning discriminator and the grasp pose detection decoder utilize a shared encoder that takes both
labeled data and unlabeled data as input. (2) The active learning discriminator estimates a score for each unlabeled data with the shared latent features.
(3) The k samples with the lowest top k scores will be chosen and input into our designed annotation interface. (4) After annotation, the selected data
will be removed from the unlabeled pool and added into the labeled pool. (5) The grasp pose detection decoder is trained with the latent features of the
labeled data. (6) Finally, the grasp detection model including the shared encoder and the grasp pose detection decoder will be applied on a real robot when
it achieves a satisfactory performance on the holdout data.
[44] looks for the data that a model is most uncertain
about. Uncertainty-based strategy usually defines a metric of
uncertainty that can be derived from deep-learning models.
Researchers have found plenty of ways to define uncertainty
so far. Uncertainty Sampling [33] utilized the posterior prob-
ability to measure uncertainty. Another approach called QBC
(Query-By-Committee) [42] trained an ensemble of models
simultaneously and the disagreement among these models is
defined as uncertainty. Nevertheless, an insufficiently trained
model is likely to bring about the inaccurate estimation of
uncertainty.

Fig. 3. Active learning theory explanation: take clustering active learning
strategy as an example, the discriminator can tell the distance between
unlabeled data and labeled pool, and select the data with the lowest score
to annotate them.

Active learning strategies designed for classification tasks
have an extremely limited application on regression tasks
due to the indispensability of posterior probabilities. As
illustrated in Fig. 3, active learning method can discriminate
the difference among data. If the model has already acquired
a sample, and then another similar sample comes up, active
learning method can detect the similarity between them, and
decide not to annotate the redundant unlabeled sample. Re-
cently, some researchers focus on task-agnostic uncertainty-
based active learning strategies. Yoo et al. [20] constructed
a loss prediction module to predict loss of training data. A
larger loss indicates that the model is more uncertain, hence

the predicted loss represents uncertainty. However, it does
not perform well in the early stage of active learning, since
few labeled data results in a deficiently trained loss prediction
module. Sinha et al. [19] used a reconstruction network to
obtain features of input images and find the most unlabeled-
like data sample. Nevertheless, it takes no advantage of
the latent features extracted by backbone algorithms and a
huge amount of extra parameters are necessary due to the
reconstruction network.
Algorithm 1 Active learning for robotic grasping
Input: Labeled dataset DL, unlabeled dataset DU , test

dataset DT , expect accuracy e, maximum iteration K,
accuracy optimized iteratively acc

Output: Trained ΘGSP and ΘDAL

1: k ← 0;
2: while acc < e and k < K do
3: k ← k + 1;
4: ΘGSP ,ΘDAL ← Train(DL, DU );
5: p(DU )← ΘDAL(DU );
6: X?

s ← argmin Xs∈DU
p(Xs);

7: We ask human labelers to annotate X?
s and get the

annotation Y ?
s ;

8: DL ← DL ∪ (X?
s , Y

?
s );

9: DU ← DU −X?
s ;

10: acc← Test(ΘGSP , DT );
11: end while
12: return ΘGSP and ΘDAL.

III. APPROACH

As illustrated in Fig. 2, we propose a discriminative active
learning framework for real-world robotic grasping problem.
We collect a large data set including both labeled data DL

and unlabeled data DU for training and a small hold-out data
set DT for evaluating. Initially, we randomly sample k data



samples to form DL and ask human labelers to annotate.
With the initial DL and DU , we can train a grasp model
ΘGSP and a discriminative active learning model ΘDAL.
With the output of the Active Learning Discriminator, we
assume samples with the lowest top k scores as the most
informative samples and ask human labelers to annotate
them, and put the newly annotated examples into DL. Then
we can use the updated DL and DU to retrain the models
ΘGSP and ΘDAL and select the most informative samples
to annotate again. With this loop continues, we collect more
and more labeled data in DL and the size of DU reduces
gradually. Meanwhile, we can apply the learned ΘGSP at
each round to evaluate the performance with the real-word
robots. Algorithm 1 shows how the active learning strategy
works on robotic grasping tasks.

In the following, we are going to describe the details of our
architectures for ΘGSP and ΘDAL, active selection strategy,
the designed user-interface for annotation, the verification
with our real-world robot and the implementation detail.

A. Joint Architecture for Grasp Detection and Discrimina-
tive Active Learning

As shown in Fig. 2, our framework mainly consists of
two components, i.e., the grasp model and the discriminative
active learning model. To specify, the grasp model is trained
with the labeled data to predict the grasping center, angle
and width, while the discriminative active learning model
is trained to produce the probability to distinguish between
labeled and unlabeled data. The feature extraction is shared
between these two models and both models are trained jointly
so that we can make full use of both the labeled data and
unlabeled data to ensure a solid feature extraction part.

In principle, any grasp detection network can be used
as the grasp model in our framework. In this paper, we
choose GG-CNN [8] as our backbone grasp pose detection
network for evaluation for two reasons: (1) GG-CNN is a
real-time grasp pose detection network with relatively high
accuracy. (2) GG-CNN has a simple architecture and a small
number of parameters, which allows us to concentrate on the
implementation of our active learning framework. We shall
emphasize that the GG-CNN here also employs the unlabeled
data in the shared feature extract part, which is different from
the origin GG-CNN.

For the active learning model, we use an MLP (multi-layer
perceptron) as the discriminator to process the latent features
and produce a probability to check whether the input example
is likely to be a labeled example. The probability represents
the similarity of a sample to be the labeled data. A larger
probability denotes that the input sample is closer to labeled
data, which indicates a lower priority of being annotated.
On the contrary, samples with smaller probabilities should
be chosen because it is more likely that the shared encoder
has not been trained with these latent features yet. In this
way, diverse samples are selected from the unlabeled pool
and annotated, which avoids picking similar samples and
helps the grasp detection network to obtain better training.
Moreover, both labeled data and unlabeled data are utilized,

Fig. 4. The appearance and workflow of our designed interface. There
are four buttons including ”Finish”, ”Cancel”, ”Readme” and ”ChoosePic”
at the top of the left column. A thumbnail of the next data waiting to be
annotated is placed at the lower left corner.
thus abundant data samples are provided to train the shared
encoder, which helps to improve the performance of the
grasp detection network as well.

Our loss function for jointly modeling is formulated as:
L = LGSP + α ∗ LDAL (1)

where LGSP follows the original loss functions in the
grasp detection network GG-CNN, and LDAL is defined as
binary cross entropy (BCE) loss. We analyzed the perfor-
mance of various combinations of the two loss functions
and found that a factor α between 0 and 0.5 is proper is
necessary to balance the different scales between them.

B. Active learning selection strategy

At each active learning iteration, we can train both the
grasp detection model ΘGSP and the discriminative active
learning model ΘDAL. We apply the trained model ΘDAL

on the unlabeled data and get the corresponding probabilities
p(DU ) measuring the likelihood of being labeled data. To
select the most informative samples, intuitively we should
choose the samples that are least likely to be the labeled
data. Therefore, we can actively choose the samples by the
following strategy:

X?
s = argminXs∈DU

p(Xs). (2)
Obviously, the sample with the least score will be chosen

in a priority order since the discriminator estimates that its
latent features are the most unfamiliar. We can choose |X?

s |
samples with top least scores according to the need. After
a human labeler annotate the chosen data, a new round of
training will be triggered.

C. Annotation interface

Annotation is an important procedure of our proposed
active learning framework after data selection. A specific
rectangle representation [45] consisting of the center point,
the angle and the width of grasp pose is used in our
framework. However, there are few available convenient
grasp annotation tools. Therefore, we develop a user interface
for grasp pose annotation and utilize it in our proposed
active learning framework. As illustrated in Fig. 2, the data
sample with the lowest active learning score is input into the
interface and a human labeler can annotate the input data
with the interface. After annotation, the selected data moves
with its label from the unlabeled pool to the labeled pool
and takes part in the next iteration of training.

Fig. 4 shows the workflow of the designed interface. The
selected data is displayed in the middle and a human labeler
can perform annotation on the image. A thumbnail is shown
at the bottom of the left column to indicate whether there



are more selected data waiting for annotation. When all
annotations are done, the finish button will trigger another
round of training for the grasp detection network and the
active learning strategy.

D. Application on a real robot

After several iterations of active learning selection, the
trained model can achieve satisfactory performance on the
holdout data as shown in Fig. 2. Then the trained grasp
detection model is ready to be applied on a real robot and
execute a grasp detection task. As shown in Fig. 5, the objects
grasped are different in texture, shapes, materials, and scales.

Fig. 5. Real-world grasp task on Kinova MOVO using the grasp pose
detection model trained by our proposed framework DAL.

E. Implementation detail

The experiments are conducted on the Ubuntu16.04 with
Intel Xeon CPU E5-2650 and NVIDIA GeForce TITAN V
GPU. All the algorithms are implemented in Pytorch [46].
In the training phase, the factor α in Equation 1 is set to
0.1. We use the Adam optimizer for the backbone GG-CNN
as the original paper does, and the SGD optimizer for the
active learning module. No data augmentation is performed
in all the experiments.

IV. EXPERIMENTS

A. Datasets and metrics

We choose two grasp datasets, the Cornell Grasp
Dataset [45] and the Jacquard Grasp Dataset [47], for training
and evaluating our active learning framework. Both datasets
are based on real-world objects.

The Cornell Grasp Dataset consists of 885 RGB-D images
with a resolution of 640×480 pixels. There are 240 different
real-world objects with 5110 positive and 2090 negative
grasps in the dataset. We randomly select 100 images to form
the initial labeled pool. For the backbone grasp pose detec-
tion network we choose, only positive grasps are necessary.
Grasps are represented in the corner points’ coordinates of
grasp rectangles. It is a realistic dataset to evaluate our active
learning framework because obtaining thousands of data is
expensive in a real-world task.

The Jacquard Grasp Dataset is much larger than the
Cornell Grasp Dataset, and composed of over 11k objects
with about 5 RGB-D images for each object. It is a sufficient
dataset for research on grasp pose detection, yet it would
not be realistic to collect such a huge amount of data for a

real grasp task. Therefore we randomly select 300 objects
with 5 RGB-D images from the Jacquard Grasp Dataset and
obtain a sub-dataset containing 1500 RGB-D images as the
initial labeled pool. We reckon that if real-life conditions are
taken into consideration, the sub-dataset with an appropriate
amount of data is proper to evaluate the efficiency of our
proposed active learning framework.

Aimed to show the performance of our active learning
strategy, we selected five representative methods for com-
parison including RS (Random Sampling), GD (Graph Den-
sity [23]), LL (Learning Loss [20]), VAAL [19], CS(Core-
set [22]) and DAL (Ours). Random Sampling is the most
intuitive selection strategy. Although there is no selection
standard for random strategy, it is still an indispensable
comparison method to measure the performance of other
active learning strategies. In addition, Random Sampling
represent the non-active learning methods

Regarding the metrics, we use a common rectangle metric
proposed by Jiang et al. [45], which is also used in the paper
of GG-CNN, to evaluate the performance of the backbone
grasp detection network. A valid successful grasp should
satisfy the following two conditions: (a) difference between
the predicted grasp angle and the ground truth grasp angle to
be less than 30◦, and (b) jaccard index (J(A,B) = |A∩B|

|A∪B| )
between the two grasp rectangles to be more than 25%.

B. Result on Cornell Dataset

We take 80% of the Cornell Grasp Dataset as the training
set and the remaining 20% as the test set. The initial labeled
pool consists of 60 randomly selected RGB-D images. For
each active learning iteration, 60 RGB-D images are chosen
from the unlabeled pool and added to the labeled pool
according to each active learning strategy. We perform 10
trials for each active learning strategy with the same random
seed in every trial. Finally, we calculate the average accuracy
of all iterations.

Fig. 6. Comparison on the Cornell Grasp Dataset [45] including RS
(Random Sampling), GD (Graph Density [23]), LL (Learning Loss [20]),
VAAL [19], CS(Core-set [22]) and DAL (Ours). The x-coordinate represents
the active learning selection rounds and the y-coordinate represents the
average accuracy of 10 trials.

As is shown in Fig. 6, our proposed active learning
framework DAL achieves the highest performance during
10 rounds active learning selection. Although the labeled
pool is quite small in the early stage, DAL takes advantage
of the latent features of both labeled data and unlabeled
data. Therefore, DAL shows outstanding performance with



few labeled data. In each round, DAL trains the shared
encoder more sufficiently than other strategies. The grasp
pose detection decoder and the active learning discriminator
both benefit from the well-trained encoder. Thus, DAL is
able to discriminate more representative data samples. VAAL
also shows relatively high performance compared to the
other strategies, however, it ignores the natural latent features
provided by the backbone GG-CNN. The performance of
Graph Density and Core-set is close to that of Random
Sampling, while Learning Loss does not perform well on
the Cornell Grasp Dataset.

C. Result on Jacquard Dataset

As mentioned above, we build a subset of the Jacquard
Grasp Dataset [47] for a more realistic comparison. The
subset consists of 300 objects with 1500 RGB-D images.
We take one random image of each object to build a test set
that contains 300 images, thus the size of the initial unlabeled
pool is 1200. Then we randomly select one image of each
object to constitute the initial labeled pool. For each active
learning iteration, 100 images are selected from the unlabeled
pool and added to the labeled pool. We perform 10 trials for
each active learning strategy and the average accuracy of
each iteration is shown in Fig. 7.

Fig. 7. Comparison on the Jacquard Grasp Dataset [47] including RS
(Random Sampling), GD (Graph Density [23]), LL (Learning Loss [20]),
VAAL [19], CS(Core-set [22]) and DAL (Ours). The x-coordinate represents
the active learning selection rounds and the y-coordinate represents the
average accuracy of 10 trials.

As illustrated in Fig. 7, our proposed active learning
framework DAL outperforms the other strategies in most
rounds. All strategies have similar performance in the early
stage because we provide a sufficient initial labeled pool.
Nevertheless, DAL still picks out informative data which
helps to improve the performance of GG-CNN. Learning
Loss shows better performance on the Jacquard Grasp
Dataset than that on the Cornell Grasp Dataset because of the
larger initial labeled pool. The performance of Graph Density
declines on the Jacquard Grasp Dataset. According to our
analysis, the distribution of the Jacquard Grasp Dataset may
not be suitable for Graph Density to select diverse samples.
As for Core-set, it performs poorly in the initial stage, but
when it comes to the final round it ranks closely to DAL.

D. Result on noisy Cornell Dataset

We can not ask annotators to provide 100% accurate
annotations in real life. Especially for the tasks of robotic

grasping, human annotators annotate data by experience,
which leads to some noise on the ground truth we used in
training. To simulate real-life annotation circumstances, we
apply random noise on the label of the Cornell Dataset to
mock a noisy grasp dataset. In particular, we randomly add
the angle of each grasp annotation with a value between
−45◦ and 45◦.

Fig. 8 illustrates the comparative result on the noisy
Cornell Grasp Dataset. Although the annotation noise affects
all active learning strategies to some extent, our proposed
DAL still shows superior performance in most rounds. DAL
pays more attention to the latent features extracted by the
shared encoder, so it can discriminate which data sample
is close to the labeled pool. DAL selects informative data
samples that the labeled pool has no similar data with.
Thus, DAL performs more stable to annotation noise. On the
contrary, other strategies especially Random Sampling barely
utilize the natural latent features, so their performance tends
to be less stable.

Fig. 8. Comparison on the noisy Cornell Grasp Dataset including RS
(Random Sampling), GD (Graph Density [23]), LL (Learning Loss [20]),
VAAL [19], CS(Core-set [22]) and DAL (Ours). The x-coordinate represents
the active learning selection rounds and the y-coordinate represents the
average accuracy of 10 trials.

E. Experiment on real robot

To demonstrate the validity of models trained by our
proposed active learning framework, we also perform an
experiment of real-time grasp pose detection on a real robot
Kinova MOVO. A model trained with about 60% of the
Cornell Grasp Dataset is utilized in the experiment. Several
common objects different in many aspects are chosen to test
the performance of the model in cluttered scene. The input
images are collected by a Kinect2 RGB-D camera fixed
on the top of the Kinova MOVO robot. The resolution of
input images is 640 pixels×480 pixels and trimmed into 300
pixels×300 pixels before entering the model.

Fig. 9 shows the real-time detection results of several
objects. We visualize the grasp quality map, the angle map
and the width map. Besides, we draw the grasp rectangle
of the best grasp on the trimmed RGB image to show
qualitative results. As is shown in (a), (b), (c) of Fig.8, the
model can detected the objects in Cornell Grasp Dataset well.
Even for (d), (e), (f) which are unseen objects, the model
also performs properly. Furthermore, we apply the model on
Kinova MOVO and perform a grasp task. Fig. 5 shows the



Fig. 9. Real-time detection results with the GG-CNN model trained on 60% data of the Cornell Grasp Dataset. (a), (b) and (c) are similar objects in the
Cornell Grasp DataSet, while (d), (e) and (f) are unseen objects.
third-person perspective and the first-person perspective of
Kinova MOVO grasping an object.

Moreover, we try to grasp each object shown in Fig. 5 for 5
times with the model trained only 4 rounds. The experiment
results are shown in Table. II. Our proposed framework
performs better than the state-of-art.

TABLE II
EXPERIMENT ON REAL ROBOT. OBJECT INDEX IS SHOWN IN FIG. 5

Object
index #1 #2 #3 #4 #5 #6 #7

DAL
(proposed) 5/5 4/5 3/5 3/5 4/5 4/5 5/5

VAAL
(comparative) 4/5 4/5 4/5 2/5 2/5 1/5 4/5

Object
index #8 #9 #10 #11 #12 Overall

DAL
(proposed) 3/5 4/5 4/5 3/5 4/5 76.7%

VAAL
(comparative) 3/5 4/5 3/5 3/5 4/5 63.3%

In the video we provide, we show the whole pipeline of our
proposed active learning framework DAL and a real-world
grasp experiment using the model trained by DAL.

V. DISCUSSION
Our proposed active learning framework contains about

2k parameters which is an insignificant number compared to
grasp detection algorithms. During the experiments on Ki-
nova MOVO, we test the computation time of our proposed
framework DAL to generate a grasp pose and it is less than
30ms. Therefore, DAL is capable of undertaking a real-time
detection task in the real environment.

As mentioned in Section III, there is a difference in the
data usage during the training stage between our proposed
DAL and the original GG-CNN. The shared encoder in DAL
is trained with both labeled data and unlabeled data, which
means it is trained more sufficiently than the encoder in the
original GG-CNN. We use the data selected by DAL after
6 rounds to train the original GG-CNN and it achieves an

accuracy of 77.45%, while the model trained by our proposed
framework can achieve an accuracy of 80.48% using the
same data. The result demonstrates that our proposed active
learning framework DAL can not only select the informative
data, but also help the grasp detection network to be trained
better and achieve higher performance with the same data.

VI. CONCLUSION
In this paper, we proposed an active learning framework

DAL for robotic grasping tasks. It utilizes a shared encoder
to extract latent features of both labeled and unlabeled data.
With sufficient latent features, a discriminator is established
to predict a probability for each data sample. The data
sample with the least probability is chosen to be annotated
because it is considered as the data that is farthest from the
labeled pool. Moreover, a user interface is developed in our
proposed active learning framework to provide an efficient
and convenient annotation tool. We demonstrate superior
results on two datasets, the Cornell Grasp Dataset and the
Jacquard Grasp Dataset. DAL shows better performance than
other active learning strategies, especially when the size of
the labeled pool is relatively small. Considering annotation
noise, we build a noisy Cornell Grasp Dataset and show
that our proposed method is stable to annotation noise. We
also demonstrate that the model trained with about 60% of
the Cornell Grasp Dataset selected by our proposed active
learning framework can handle a real-world grasp detection
task. In the future, we plan to generalize DAL to other deep
learning applications of robotics, like navigation and scene
reconstruction.
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[44] P. Hemmer, N. Kühl, and J. Schöffer, “Deal: deep evidential active
learning for image classification,” in Deep Learning Applications,
Volume 3. Springer, 2022, pp. 171–192.

[45] Y. Jiang, S. Moseson, and A. Saxena, “Efficient grasping from rgbd
images: Learning using a new rectangle representation,” in 2011 IEEE
International conference on robotics and automation. IEEE, 2011,
pp. 3304–3311.

[46] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.
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